

NoSQL Performance Benchmarks
Series: Couchbase

http://www.bigstep.com/
http://www.bigstep.com/

This is the first of a series of performance benchmarks on NoSQL DBs

that we plan to share with you. Our goal is to understand the various

scaling profiles of distributed database technologies as well as identify

environments that provide optimum performance/price. Many of our

findings can be applied to on premise infrastructure as well and even

some cloud scenarios.

This performance benchmark on Couchbase shows sub-millisecond

response times but also a difference between GET/PUT operations and

QUERY operations when multiple instances are added to the cluster.

We have also tested the Memory-Access-Time sensitivity of Couchbase.

http://www.bigstep.com/
http://www.bigstep.com/

Hardware Setup

We used the following infrastructure for the tests:

- 10 FMCI 16.192 instances with 2 x Intel Xeon E5-2690 CPUs (8

physical cores at 2.9 GHz each) and 192 GB of RAM for Couchbase

nodes.

- 2 FMCI 20.128 instances with 2 x Intel Xeon E5-2690v2 CPUs

(10 physical cores at 3 GHz each) and 128GB of RAM for JMeter

loader nodes.

These nodes were connected with two independent 10 Gbps networks,

one for the actual loading and inter-node communication and the other

one for backend inter-loader communication. Also the nodes were

connected to our Solid Store iSCSI Block Storage via a third

independent 10 Gbps link per node.

http://www.bigstep.com/
http://www.bigstep.com/

Software Setup

We used Couchbase Enterprise 2.5.1. The loader software was Apache

JMeter 2.11 with custom samplers written by us that are available at

our github repository. The custom sampler instantiates the Couchbase

client and then uses it to execute independent PUT, GET and then

QUERY operations. The dataset is the Last.fm training dataset which

has about one million JSON formatted records of songs. The nodes

were added sequentially to the pool in increments of 2. The bucket that

held the data was always deleted and recreated before running the

tests. Also, the auto-compaction feature was disabled.

All the tests were executed using 1000 concurrent client threads that

instantiate a separate client instance on each loader machine, which

totals 2000 concurrent threads. The Couchbase clients discover the

nodes participating in the cluster and connect to the individual nodes

directly thus yielding more than 2000 concurrent connections to the

cluster.

All the hosts had the fs.file-max ulimit increased to 55k. We have been

running Centos 6.5. The data was aggregated from all loaders and

saved in CSVs. The time series was then analysed using Octave. To test

the Query performance we used the following map/reduce view:

Mapper function

function (doc, meta) {

 for(i=0;i<doc.tags.length;i++)

 {

 if(doc.tags[i][0]=="electronic")

 emit(meta.id, doc);

 }

}

reducer function:

_count

The view was also setup before running any other test.

http://www.bigstep.com/
http://www.bigstep.com/
http://jmeter.apache.org/
http://jmeter.apache.org/
https://github.com/bigstepinc/jmeter-couchbase-custom-sampler
http://labrosa.ee.columbia.edu/millionsong/lastfm

Monitoring

This test is designed to verify cluster behavior under normal operating

circumstances so the cluster was monitored permanently. No hardware

limitation was hit during the tests. We used a combination of dstat,

HTop, IOtop and Couchbase’s own UI to monitor all the hosts including

the loaders. We have also made sure that the view was setup and

published every time after a bucket has been re-created. We have also

waited until the cluster has settled before starting the tests.

No. of Instances 2 4 6 8 10

PUT duration (s) 35 42 58 73 99

PUT est resp. time

(ms)
0.035 0.042 0.058 0.073 0.099

GET duration (s) 32 39 55 72 84

GET est. resp. time

(ms)
0.032 0.039 0.055 0.072 0.084

QUERY duration (s) 209 131 134 133 141

QUERY avg. resp.

time (ms)
1886 911 667 483 345

http://www.bigstep.com/
http://www.bigstep.com/

As can be seen, the higher the number of compute instances, the

higher the duration of GET and PUT operations, so lower performance

overall. Our explanation for this is that each additional compute

instance introduces additional network latency.

Click to enlarge

http://www.bigstep.com/
http://www.bigstep.com/
http://i1.wp.com/blog.bigstep.com/wp-content/uploads/2014/08/graph4.png

Query performance on the other hand seems to increase linearly as we

add servers, possibly due to map/reduce operations being highly

parallel in nature. Also, since each operation takes more than 100 ms,

the network latency impact is no longer visible.

Click to enlarge

http://www.bigstep.com/
http://www.bigstep.com/
http://i2.wp.com/blog.bigstep.com/wp-content/uploads/2014/08/graph24.png

How a PUT RUN looks like

As JMeter does not support out of the box resolutions smaller than 1

millisecond we had to adjust our custom sampler to calculate and

export the duration using System.nanoTime(). This allowed us to

analyse the real response times in Octave. Below is a plot of one of the

PUT runs. Also some outliners were removed.

Click to enlarge

http://www.bigstep.com/
http://www.bigstep.com/
http://i2.wp.com/blog.bigstep.com/wp-content/uploads/2014/08/put.png

How a GET RUN looks like

This is how a GET run looks like analyzed in Octave. Again, we had to

use the same sample result time from our custom sampler and also

removed outliners.

Click to enlarge

http://www.bigstep.com/
http://www.bigstep.com/
http://i0.wp.com/blog.bigstep.com/wp-content/uploads/2014/08/get.png

How a QUERY RUN looks like

Query runs on the other hand take a lot longer to execute so we don’t

need the same sub-ms analysis.

Click to enlarge

http://www.bigstep.com/
http://www.bigstep.com/
http://i0.wp.com/blog.bigstep.com/wp-content/uploads/2014/08/query.png

Performance-to-price ratio

We have also calculated the performance-to-price ratio. Since

Couchbase has a very interesting scaling pattern as some metrics

decrease and some increase as we add servers, we assigned a score to

each of the three metrics we had (GET test duration, PUT test duration,

QUERY average response time) and then we added them.

http://www.bigstep.com/
http://www.bigstep.com/

Pr – the price of an instance is in British Pounds per hour for a FMCI

16.192. N is the number of nodes.

No. of Instances 2 4 6 8 10

GET Score 1.00 0.82 0.59 0.45 0.39

PUT Score 1.00 0.84 0.60 0.48 0.35

Query score 0.18 0.38 0.52 0.71 1.00

Score (query

performance)
2.18 2.04 1.71 1.64 1.74

Price/h (GBP) 4.28 8.56 12.84 17.12 21.4

Price to perf 0.51 0.24 0.13 0.10 0.08

http://www.bigstep.com/
http://www.bigstep.com/

This shows that the more nodes you have the less efficient you are in

the way you’re spending money. Since the ratio between these

operations is highly application specific the ratio will also look different.

Click to enlarge

http://www.bigstep.com/
http://www.bigstep.com/
http://i1.wp.com/blog.bigstep.com/wp-content/uploads/2014/08/pricetoperf.png

The impact of auto-compaction

Couchbase is an append-only database and while this makes it always

consistent and avoids data corruption, having an ever increasing file will

eventually eat up all the available disk. This means that from time to

time the database has to be “compacted”. We have studied the impact

that the default auto-compacting setting has on a PUT series. As

Couchbase documentation recommends, auto-compaction should only

be enabled during off-peak hours as it generates high delays in the

response times which should normally be under 1 ms.

Click to enlarge

http://www.bigstep.com/
http://www.bigstep.com/
http://blog.couchbase.com/compaction-magic-couchbase-server-20
http://i1.wp.com/blog.bigstep.com/wp-content/uploads/2014/08/auto-compaction.png

The impact of Virtualisation

Memory response time bound applications, such as NoSQL databases

are heavily influenced by the memory memory access speed on the

hosts . We have added a comparison between 2 FMCI 4.16 (16 GB RAM,

Quad-Core Intel E3-1230v2 at 3.3 GHz) and 2 m3.2xlarge (8 cores , 30

GB of RAM) instances – which are very similar in terms of specs. In both

environments the loaders were residing on an additional 2 machines

identical with the Couchbase machines. The following is a benchmark

of the actual systems. We tested the time to read and write 1 TB into

and from the RAM (using SysBench). We also show the results of the

“threading” performance SysBench test. On our Full Metal Cloud we

were running on Centos 6.5 and on AWS we were running RHEL6.5. The

commands we ran are:

sysbench --test=memory --num-threads=8

--memory-block-size=1M --memory-total-

size=1T run

http://www.bigstep.com/
http://www.bigstep.com/
http://bigstep.com/full-metal-cloud

In both cases smaller is better:

Click to enlarge

http://www.bigstep.com/
http://www.bigstep.com/
http://i2.wp.com/blog.bigstep.com/wp-content/uploads/2014/08/graph5.png

This is the impact of this discrepancy on Couchbase:

Click to enlarge

http://www.bigstep.com/
http://www.bigstep.com/
http://i2.wp.com/blog.bigstep.com/wp-content/uploads/2014/08/graph31.png

Conclusions

We have found out that Couchbase is very scalable but follows the

same rules of diminishing returns as many distributed systems do.

Nevertheless we managed to achieve up to 350k requests/second for

atomic operations which makes it the highest performing database we

have seen in our lab so far at least for this particular test.

Click to enlarge

We’ll be sharing more of our tests with you soon so tune in. In the

meantime, let us know if you’ve worked with Couchbase and seen a

different behavior or if there’s any particular database you’d like us to

test next.

http://www.bigstep.com/
http://www.bigstep.com/
http://i0.wp.com/blog.bigstep.com/wp-content/uploads/2014/08/max.png

