
MongoDB vs DocumentDB

Cosmin Pintoiu
Solution Architect at Bigstep

Cosmin Pintoiu
Solution Architect at Bigstep

Designed and implemented critical message processing projects
in financial sector and real-time analytics in retail sector.

Currently focused on large-scale real-time implementations,
Data lakes and machine learning using Tensorflow.

Agenda:

- Intro to Mongo and DocumentDB

- Setup Methodology
- Node types

- Network and AZ

- Benchmark using
- Jmeter and custom sampler

- YCSB

- Mongo Socialite

- Price consideration

- Conclusions

- Q&A

Duration: 25m – 30m

In this study, we will take a look at performance and cost aspects of running a MongoDB
database environment on Bigstep Metal Cloud versus DocumentDB from AWS. To make it a fair
comparison we will use similar resources and identical load tests.

• MongoDB is a cross platform document oriented database, was released 10 years ago and offers
a multitude of features: indexing, replication, load balancing, aggregation, transactions.

• Amazon DocumentDB (with MongoDB compatibility) is a fast, scalable, highly available, and fully
managed document database service that supports MongoDB workloads.

Our scope is to make this study impartial and easily reproducible, in this regard all the steps involved in setting up the
environment and the test are available on github (https://github.com/ccpintoiu?tab=repositories).

MongoDB and DocumentDB

Benchmarks

Considerations when performing benchmarks*:

- Relevant (for users of the benchmark: engineering, marketing, buyers etc)

- Repeatable (results)

- Fairness (to both hw and sw involved)

- Verifiability (in case of audit)

- Economical (to set up, run and publish)

* key aspects according to: Performance Evaluation and Benchmarking for the Era of Artificial Intelligence TPCTC
2018

Authors: Raghunath Nambiar and Meikel Poess

eBook:

https://play.google.com/store/books/details?id=ps6FDwAAQBAJ&rdid=book-ps6FDwAAQBAJ&rdot=1&source=gbs_vpt_read&pcampaignid=books_booksearch_viewport

Model CPU Memory Storage Network Performance

Bigstep MongoDB FMCI 8.32 8* 32 GB ECC BSA 4 x 10 gbps

AWS DocumentDB db.r4.2xlarge 8 (vCPU) 61 GB EBS-only** high

AWS MongoDB EC2 m5.2x.large 8 (vCPU) 32 GB EBS-only** Up to 10 gb

Node types

Setup Mongo on Bigstep

- https://ctrl.bigstep.com/en/infrastructure/diagram?infrastructure_id=2887
- 1 Load node + 3 Mongo nodes
- Version 4.0.1

https://ctrl.bigstep.com/en/infrastructure/diagram?infrastructure_id=2887

Setup DocumentDB

- 1 Load node (EC2) + 3 Mongo nodes (db.r4.2xlarge)
- API version 3.6

Benchmark using

Jmeter is a load testing tool used mostly on web apps but it can be used very well on databases.

Is java based and supports variable parametrization.

This version uses ReactiveStreams 1.10 and the 3.9 Java MongoDB Driver and is tested with

Jmeter version 5.0. It supports the following operations: read/write and readMany/writeMany.

YCSB is popular tool when comparing relative performance on NoSQL databases. Developed at

Yahoo! for the specific purpose of comparative studies of various databases systems, YCSB is highly

customizable. Workload files with 50/50 reads/writes, 75/25 and 95/5 to have a valid comparison.

Socialite is a test developed by Mongo team part of their regression testing for mongo product.

This test simulates a social media platform with a number of users, followers and articles per user.

The run command reads the first 100 iterations and writes the results into a file. The output file is

quite rich, most important field is the mean_rate, which shows the average ops/sec.

10

Jmeter test

https://github.com/bigstepinc/jmeter-mongo-db-custom-sampler
https://github.com/bigstepinc/jmeter-mongo-db-custom-sampler/releases/latest

https://github.com/bigstepinc/jmeter-mongo-db-custom-sampler
https://github.com/bigstepinc/jmeter-mongo-db-custom-sampler/releases/latest

11

Jmeter test

Jmeter config file used:

50 threads (simulates users)

loop count: 40000 (how many times a thread group gets executed)

Run command and time:

./jmeter.sh -n -t /tmp/Jmeter-Bigstep_1.3_WRSingle4M.jmx -l /tmp/output_jmxWRSingle4M.csv

50124.86667

12662.01951

19737.72222

14825.54737

0

10000

20000

30000

40000

50000

60000

Bigstep MongoDB AWS DocDB

A
vg

 O
p

s/
se

c

Jmeter custom sampler read/write 50 threads
Avg Ops/sec

jmeter read / write single record jmeter read / write batch (100) records

12

Jmeter test

50124.86667

12662.01951

66813.92222

19737.72222

14825.54737
12527.684

0

10000

20000

30000

40000

50000

60000

70000

80000

Bigstep MongoDB AWS DocDB AWS Mongo on EC2

O
p

s/
se

c

Jmeter custom sampler read/write 50 threads
Avg Ops/sec

jmeter read / write single record jmeter read / write batch (100) records

3rd test including Mongo Db on AWS EC instance (all instances in one availability zone)

13

Jmeter distributed test

Next steps: Stress test using Jmeter Distributed testing

We can use our Custom Mongo Sampler (one other option is: https://github.com/johnlpage/POCDriver)

https://github.com/johnlpage/POCDriver

14

YCSB test

The goal of YCSB project is to develop a framework and common set of

workloads for evaluating the performance of different "key-value" and "cloud"

serving stores.

https://s.yimg.com/ge/labs/v1/files/ycsb-v4.pdf Author: Brian F. Cooper

https://s.yimg.com/ge/labs/v1/files/ycsb-v4.pdf

15

YCSB test

Load command and time:
./bin/ycsb load mongodb -s -P workloads/workload_small -threads 32 -p

mongodb.url=mongodb://10.0.0.31:27017/?replicaSet=mongo_rs&w=majority

Bigstep

MongoDB AWS DocDB

load 4M 9m44.324s 45m44.28s

Load time:

Example workload file used:

requestdistribution=zipfian

recordcount=4096000

operationcount=20000000

readallfields=true

readproportion=0.5

updateproportion=0.5

eBook: Performance Evaluation and Benchmarking for the Era of Artificial

16

YCSB test writeConcern

•Allowed values are:

• errors_ignored

• unacknowledged

• acknowledged

• journaled

• replica_acknowledged

• majority

readPreference:

•Allowed values are :

• primary

• primary_preferred

• secondary

• secondary_preferred

• nearest

• db.usertable.count()
4096000

• 20GB
• W=majority
• 32 threads

17

YCSB test

31495.03278

14096.64095

11625.95944

17015.22105

8944.402222

5864.294118

0

5000

10000

15000

20000

25000

30000

35000

run 95read / 05 write run 75read / 25 write run 50read / 50 write

YCSB Ops/sec

Bigstep MongoDB AWS DocDB

The first step is to load 4 million records using 32 threads and count the time that each environment
needs to complete the task.

18

YCSB test

31495.03278

14096.64095

11625.95944

17015.22105

8944.402222

5864.294118

35303.76111

11929.41

5521.108333

0

5000

10000

15000

20000

25000

30000

35000

40000

run 95read / 05 write run 75read / 25 write run 50read / 50 write

YCSB Ops/sec

Bigstep MongoDB AWS DocDB AWS EC2 mongoDB

19

Socialite

As with the YCSB tool, Socialite is quite complex and offers various load tests: benchmark, timeline-read-follower-ramp,
send-ramp-followers.
The Socialite implementation uses 3 MongoDB collections by default called users, followers, following.

Load command and time:

java -jar ./target/socialite-0.0.1-SNAPSHOT.jar load --users 100000 --maxfollows 5000 --messages 20 --threads 32 sample-config.yml

Run command:

java -jar ./target/socialite-0.0.1-SNAPSHOT.jar timeline-read-follower-ramp --out output1 --start 1 --stop 100 sample-config.yml

Example config file used:

totalUsers=10000

activeUsers=1000

duration=3600

sessionDuration=30

concurrency=512

maxFollows=5000

messages=20

0

100

200

300

400

500

600

700

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89

To
ta

l

Ops/sec

Bigstep MongoDB AWS DocDB

timeline-read-follower-ramp

Socialite

21

Socialite

394.0030235

268.0969634

717.1475015

0

100

200

300

400

500

600

700

800

Bigstep MongoDB AWS DocDB AWS EC2 MongoDB

O
p

s/
se

c

Ops/sec for: timeline-read-follower-ramp

AWS DocumentDB is ready for production and you can

start loading data as soon as the instances are up. You

don’t have access on the management side of the

services so the disadvantage is that you cannot

customize. You use as it is.

For the moment Bigstep does not provide

managed services on MongoDB. You can

install the software off the shelf on the bare

metal instances. The main advantage is that

you can configure the cluster accordingly to

your needs. Being a self-manage platform you

can also setup up a Sharded Cluster which will

offer you better performance on large amount

of data.

Cluster deployment and scalability

Create

Cluster

Install

Mongo
Scale (1 node)

Attach

Worker

s

Total time:

Bigstep Platform 12 min 10 min - - 22 min

AWS DocDB 12 min - 4 min 2 min 18 min

Steps to take for scalability Bigstep or AWS EC cluster:

 deploy new instance

 configure private IP

 install mongodb

 add the new node in cluster

The work time is higher than DocumentDB as at the moment Bigstep does not provide MongoDB as an

integrated service, yet some steps can be automated. DocumentDB is way easier to scale up to 15 replica

nodes and grows the size of your storage volume automatically

Cluster deployment and scalability

Scale Cluster Add

Instance
Conf IP

Install

Mongo

Add node

in cluster
Total time:

Bigstep Platform 5 min 2 min 5 min 5 min 17 min

AWS DocDB 5 min - - - 5 min

Costs for entire cluster:

Costs for entire cluster:

814.48

1012.8407

849.44

978

1587.21

1226.76

0

200

400

600

800

1000

1200

1400

1600

1800

Bigstep MongoDB AWS DocDB AWS EC2 MongoDB

Eu
ro

Price comparison

cluster reserved cluster on demand

General Takeaways

Pick the right type of node
Perform custom tests for your

problem
Take into account scalability

and flexibility

I’m all ears!

@bigstepinc

cosmin.pintoiu@bigstep.com

